
t (seconds)	0	2	8	14
v(t) (meters per second)	15	12	6	0

The velocity of a particle, P, moving along the x-axis is modeled by a differentiable function v, where time t is measured in seconds and v(t) is measured in meters per second. Selected values of v(t) are shown in the table above.

- (a) Use the data in the table to approximate v'(6) using the average rate of change of v(t) over the interval $2 \le t \le 8$. Show the computations that lead to your answer. Indicate units of measure.
- (b) Interpret the meaning of v'(6) in the context of the problem.
- (c) Justify why there must be a time t=k, for $8\leq k\leq 14,$ when the velocity of the particle is 3 meters per second.
- (d) Use a left Riemann sum with the three subintervals indicated by the data in the table to approximate the value of $\int_0^{14} v(t) \ dt$. Show the computations that lead to your answer.
- (e) Find $\int_3^{21} v'(\frac{t}{3}+7) \ dt$. Show the computations that lead to your answer.
- (f) Let $p(x) = \int_0^{4x} v(2t) \ dt$. Find p'(1). Show the computations that lead to your answer.
- (g) The position of a second particle, Q, can be modeled by a twice-differentiable function g. It is known that g(4) = 5, g'(4) = 2, and g''(4) = -6. Is the speed of particle Q increasing or decreasing at time t = 4? Give a reason for your answer.
- (h) Let y=f(x) be the particular solution to the differential equation $\frac{dy}{dx}=-2x+3y^2$ with initial condition f(3)=2. Write an equation for the line tangent to the graph of f at the point (3, 2).

The graph of the function h on the interval $-7 \leq x \leq 6$ consists of three line segments, as shown in the figure above. Let r be the function defined by $r(x)=\int_0^x h(t)dt$ for $-7 \le x \le 6$.

- (a) For the function r, is x=-2 the location of a relative minimum, a relative maximum, or neither? Give a reason for your answer.
- (b) Find the absolute minimum value of r on the interval $-7 \leq x \leq 6$. Justify your answer.
- (c) On what open intervals contained in -7 < x < 6 is the graph of r both increasing and concave down? Give a reason for your answer.

B

- (d) Find the value of r''(-2), or explain why it does not exist.
- (e) Find $\lim_{x\to 0} \frac{r(x)}{x-4}$. Show the computations that lead to your answer.
- (f) Let v be the function defined by $v(x)=r(x^2)$. Find the value of $v'\Big(\sqrt{3}\Big)$, or explain why it does not exist. Show the computations that lead to your answer. (Note: $\sqrt{3}$ can be keyboarded as sqrt(3).)